WARNING

The Fitbit Flow has not been FDA cleared or approved;

The Fitbit Flow has been authorized by FDA under an EUA;

The Fitbit Flow is authorized only for the duration of the declaration that circumstances exist justifying the authorization of the emergency use of ventilators under section 564(b)(1) of the Act, 21 U.S.C. § 360bbb-3(b)(1), unless the authorization is terminated or revoked sooner.

Due to the rapid development cycle for this emergency use device, all efforts were made to verify the software, but defects may still exist. The consequences of these defects are unknown and may pose a risk to the patient.

For use only while FDA’s Emergency Use Authorization is in effect.
Table of Contents

Glossary 6
Purpose of this manual 9
Safety Information 9
Definitions 9
General Warning Statements 9
Symbols and Markings 12
Fitbit Flow Overview 14
Indications for Use 14
Target Patients 14
Target Environment 14
Operational Use 14
Breathing Circuit 16
Respiratory Parameter Controls 17
Safety Features 17
Compatible Manual Ventilator 18
Tubing, Sensors, and Valves (outside enclosure) 18
Tubing, Sensors, and Valves (inside enclosure) 18
Risks and Benefits 19
Device Description 20
User Interface 20
Controls, Indicators, and Displays 20
Front Panel 22
Back Panel 23
Left Panel 24
Right Panel 25

For use only while FDA’s Emergency Use Authorization is in effect.
Size and Weight 26
Environmental Conditions 26
Alarms and Troubleshooting 27
 Alarm Level of Priority 27
 Alarm Display 28
 Silence Alarms 28
 Alarm List 29
 Additional Troubleshooting 30
Installation and Setup 31
 Assemble the Stand 31
 Components 31
 Assembly Instructions 33
 Assemble the Fitbit Flow Air Pathway System 36
 Components 36
 Assemble the Patient Circuit 39
 Assemble the BVM Inside the Fitbit Flow 41
 Power the Fitbit Flow 42
Operating Procedures 43
 Turn On the Fitbit Flow 43
 Start Ventilation 43
 Ventilation Modes 43
 Volume Control Mode 43
 Pressure Control Mode 45
 Stop Ventilation 47
 Turn off the Fitbit Flow 47
 Adjust Settings and Alarm Parameters 47
Cleaning and Maintenance 49

For use only while FDA’s Emergency Use Authorization is in effect.
Cleaning the Fitbit Flow 49
Cleaning the Manual Resuscitator Bag 49
Replace Accessories 50
Specifications 50
 Physical 50
 Accuracy 51
 Labeling Parameters 51
 Electrical 52
 Alarm Conditions 53
Standards Compliance 54
 General Standard 54
 Particular Standards 54
User Assistance Information 55
 Technical Support 55
 Trademark Information 55
A

Acute respiratory distress syndrome (ARDS)
A life-threatening lung condition in which fluid enters the lungs, causing low blood oxygen

Assist control (AC)
An optional setting which provides support for patient-triggered breaths when enabled

B

Bag valve mask (BVM)
See Manual resuscitator.

D

Dual limb breathing circuit
Patient circuit with two tubes: one tube between the gas outlet and the patient for inspiratory gas, and one tube between the patient and the exhalation block for exhalation gas

E

Endotracheal tube
A plastic tube that is placed through the patient’s mouth into the trachea

Expiratory tidal volume (VTe)
The volume of air moved out of the lungs in a breath

I

I:E ratio
The ratio of the inspiratory time as compared to the expiratory time

Inspiration time (IT)
The amount of time it takes to deliver air to the patient’s lungs

Inspiratory pressure (Pins)
The level of pressure applied to the lungs during the inspiration phase

Inspiratory tidal volume (VTi)
The volume of air moved into the lungs in a breath

For use only while FDA’s Emergency Use Authorization is in effect.
M

Manual resuscitator
A bag used to provide positive pressure ventilation to patients who are not breathing. Also known as a bag valve mask (BVM).

P

Patient-triggered breath
A breath initiated by the patient

Peak inspiratory pressure (PIP)
The highest pressure measured during the inspiration phase

Plateau Pressure (Pplt)
The pressure within the breathing circuit following an end-inspiratory pause

Positive end-expiratory pressure (PEEP)
Pressure that is applied by the ventilator at the end of the patient’s breath

Pressure (P)
The force of air applied per unit area

Pressure control mode (PCV)
A mode of ventilation in which a fixed pressure is applied during the inspiratory phase

R

Respiratory rate (RR)
The number of breaths per minute (bpm) a patient takes

T

Tidal volume (Vt)
The volume of gas delivered to the patient in one breath

U

Uninterruptible power supply (UPS)
A backup device that supplies electricity when the regular power source fails

For use only while FDA’s Emergency Use Authorization is in effect.
Volume control mode (VCV)

A mode of ventilation in which a fixed volume is applied during the inspiratory phase
Purpose of this manual

This user manual contains information on the safe and effective use, setup, and maintenance of your Fitbit Flow. Before operating the Fitbit Flow, be sure to read and understand all the instructions in this manual. The Fitbit Flow is intended for use by qualified, trained personnel under the direction of a physician only when an FDA-cleared clinical ventilator is not available.

Safety Information

Definitions

This manual uses the following type of indicator to highlight critical information:

WARNING

WARNING indicators describe potentially hazardous conditions that could result in death or serious injury.

General Warning Statements

- Use only as directed. Review the User Manual completely before use. Improper usage or unauthorized modification of this product may result in user or patient injury.
- The use of a UPS (Uninterruptible Power Supply) designed for a clinical setting is mandatory as loss of power may result in patient injury or death.
- The UPS connected to the Fitbit Flow should be equipped with an alarm to alert the operator when power is switched to battery power. The UPS should also indicate how much battery power and/or time remains.
- The system does not have the capability to sound an alarm due to a power outage to the system. If the power source is interrupted, the system will revert to the default settings when power is restored. The operator will need to change any desired settings and restart ventilation.
- Clinical monitoring (e.g. SpO\textsubscript{2} with finger pulse oximetry and arterial blood gases) should be conducted to make sure the patient is achieving adequate oxygenation. The Fitbit Flow does not directly measure the %FiO\textsubscript{2} delivered to the patient, and one should not assume that the delivered %FiO\textsubscript{2} is equal to the %O\textsubscript{2} of the source.
- The Fitbit Flow has not been tested for electromagnetic compatibility (EMC). It may produce electromagnetic disturbances that will affect the performance of other equipment. It may fail to perform as expected in the presence of electromagnetic disturbances from other equipment.

For use only while FDA’s Emergency Use Authorization is in effect.
- The Fitbit Flow has not been tested for MRI scanner compatibility and should not be used in the vicinity of an MRI scanner.
- Do not pull on the oxygen tube. Doing so could dislodge or otherwise move the manual resuscitator within the enclosure.
- The Fitbit Flow has been tested for 24 hours of continuous use. If using longer than 24 hours, check for signs of wear and tear, particularly on the manual resuscitator.
- The Fitbit Flow has not been characterized under leakage test conditions. If there is significant patient circuit leakage, the device may under-deliver tidal volume to the patient.
- Provide sufficient space around the Fitbit Flow for adequate air flow. Do not position next to objects that may block the flow of air. Failure to do so may cause the equipment to overheat, thereby interfering with patient ventilation.
- Do not block the gas intake port or emergency intake port. This may interfere with patient ventilation.
- Do not add any attachments or accessories to the Fitbit Flow that contravene the instructions for use of the Fitbit Flow, as the Fitbit Flow might not function correctly, leading to the risk of patient death or serious deterioration of health.
- The Fitbit Flow shall not be used in a hyperbaric chamber. Such use might cause the Fitbit Flow to not function correctly, causing patient death or serious deterioration of health.
- The Fitbit Flow does not support the delivery of gas anesthesia agents, and is not intended for use with such medications. Such use might cause the Fitbit Flow to not function correctly, causing patient death or serious deterioration of health.
- The Fitbit Flow shall not be used with inlet gases other than medical air or oxygen, which are not specified for use (e.g. helium or mixtures with helium). Such use might cause the Fitbit Flow to not function correctly, causing patient death or serious deterioration of health.
- It is the responsibility of the clinician to ensure that the oxygen source is appropriately selected with respect to the range of pressure, flow rate and oxygen concentration.
- Breathing system filters and heat and moisture exchangers may require more frequent replacement to prevent increased resistance and blockage.
- When moving the Fitbit Flow, disconnect it from the patient and turn off the device.
- Lock the stand’s caster wheels whenever the Fitbit Flow is in use.
- Do not attempt to move the Fitbit Flow when it is connected to a patient.
- Do not cover or obstruct the alarm button. The operator must be able to see the alarm button when the device is connected to the patient, particularly in noisy environments where the operator may not hear the alarm.
- Frequent alarms are possible. When an alarm is triggered, always check the cause and respond accordingly. Failure to respond to alarms can result in serious harm or death.
- Failure to follow the cleaning and maintenance instructions could result in equipment damage and potentially harm the patient.
- Do not attempt to clean or re-use single use accessories.
- Do not reuse single-use components. Doing so increases the risk of cross-contaminations between patients.

For use only while FDA’s Emergency Use Authorization is in effect.
- When operating in PCV (Pressure Control Mode) the Fitbit Flow may not achieve a constant pressure throughout the entire inspiratory period, which may reduce the delivered tidal volume.
- When Assist Control is enabled, it is important to monitor for breath stacking (also called breath dyssynchrony stacking), which can result in unintended high tidal volumes as a consequence of incomplete exhalation between consecutive cycles. Continuous CO₂ monitoring (also called capnography) and arterial blood gas sampling should be conducted to detect high CO₂ levels which may be a consequence of hypoventilation.
- In some patients, especially those with abnormal lung compliance, an inspiratory hold of one second may not be long enough for the pressure to equilibrate in the lungs. In such cases, the reported plateau pressure will not be accurate.

Federal law restricts this device to sale by or on the order of a Physician.
Symbols and Markings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This symbol appears in the user manual. It is essential to read, understand, and follow these instructions or warnings before using the Fitbit Flow.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears in the Fitbit Flow box. Pinch point. Keep hands and fingers clear during operation.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the Fitbit Flow’s back panel. It signifies where the AC connector cable is located.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the Fitbit Flow’s back panel in two locations: the holes where the external display attachment should be screwed in, and above the HDMI and USB connections. It signifies where to connect the optional external display.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the Fitbit Flow’s back panel above a USB connection. It signifies where to connect to the Fitbit Flow in order to service it.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the control panel’s alarm button. It is used to display alarm details and silence an active alarm.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the control panel’s up button. It is used to scroll up through menu items or increase a parameter value.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the control panel’s down button. It is used to scroll down through menu items or decrease a parameter value.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the control panel’s back button. It is used to return to the previous menu.</td>
</tr>
<tr>
<td></td>
<td>This symbol appears on the control panel’s confirm button. It is used to accept a new setting.</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
This symbol appears on the control panel’s start/stop button.
It is used to start or stop ventilation.

For use only while FDA’s Emergency Use Authorization is in effect.
Fitbit Flow Overview

Indications for Use

The Fitbit Flow is indicated for the continuous mechanical ventilatory support of adult patients. The Fitbit Flow is an accessory to a manual resuscitator and consists of a reusable mechanical actuator and the single-use, disposable tubing assembly. The Fitbit Flow supports conventional Volume Control and Pressure Control modes of ventilation, as well as an “Assist Control” feature to support breaths triggered by the patient. The Fitbit Flow is intended for use by qualified, trained personnel under the direction of a physician only when an FDA-cleared clinical ventilator is not available during the COVID-19 pandemic.

Target Patients

The Fitbit Flow is intended for adult patients who require the following types of invasive or non-invasive ventilatory support, as prescribed by an attending physician:

- Positive Pressure ventilation
- Breath types including Volume Control and Pressure Control
- Assist/Control

The Fitbit Flow is applicable to patients with severe respiratory symptoms, including those with Acute Respiratory Distress Syndrome (ARDS), who require respiratory support.

Target Environment

The Fitbit Flow is intended for use in hospitals and hospital-type facilities (including field hospitals), that provide care for patients requiring respiratory support.

The Fitbit Flow is not intended for home use. The Fitbit Flow must be operated by respiratory therapists, doctors, or nurses. The Fitbit Flow should only be used on adult patients when an FDA-cleared clinical ventilator is not available.

Operational Use

The Fitbit Flow is designed to provide continuous ventilation through automated activation of an FDA-cleared manual resuscitator (also called bag valve mask (BVM)). The system consists of the box and a dual-limb breathing circuit attached to the patient, shown in Figure 1.

For use only while FDA’s Emergency Use Authorization is in effect.
Figure 1: System Diagram

For use only while FDA’s Emergency Use Authorization is in effect.
The Fitbit Flow should only be used on adult patients and when an FDA-cleared clinical ventilator is not available. The Fitbit Flow is designed to provide continuous mechanical ventilation to the patient.

Ventilation modes include a volume control mode (VCV) and a pressure control mode (PCV). An optional Assist Control setting provides support for patient-triggered breaths when enabled. Enabling Assist Control allows the software to automatically detect when the patient is attempting to trigger spontaneous breaths in between ventilator cycles, by sensing the pressure below the positive end-expiratory pressure (PEEP) on the inspiration limb. When a patient-triggered breath is sensed, the Fitbit Flow will provide support for that breath to achieve the target volume or pressure. When Assist Control is disabled, the respiratory rate is entirely determined by the ventilator rate setting.

Breathing Circuit

The medical gas source is connected to the box and the gas flows through the resuscitator bag within the box (see Figure 2) into the standard breathing circuit tubing outside of the box and into the patient’s airway through a standard endotracheal tube.

![Figure 2: Internal Air Pathway](image)

The Fitbit Flow connects to a medical gas source through the manual resuscitator bag or the reservoir bag, as per the indications of use of the manual resuscitator. The Fitbit Flow accessory uses motorized arms to automatically compress a resuscitator bag (see Figure 3).

For use only while FDA’s Emergency Use Authorization is in effect.
Respiratory Parameter Controls

Controls are provided for setting respiratory parameters:

- Respiratory Rate (RR)
- Inspiratory:Expiratory ratio (I:E)
- Tidal Volume (VT)
- Inspiratory Pressure (P)

PEEP is set by a compatible manual valve made by the resuscitator or ventilatory accessory manufacturer.

Safety Features

The Fitbit Flow accessory has a pressure sensor at the patient connection and flow sensors on the inspiratory path and expiratory path for monitoring and feedback control. These pressure and flow sensors connect to standard ventilator tubing connectors, as listed below. There are hardware pressure valves which limit the pressure in either limb to 1 PSI (70 cmH₂O). There is also a pressure-limiting valve, which is an optional part available for the resuscitator bag, that limits the pressure to 40 cmH₂O (typical). In addition, you can set software limits that trigger audible alarms for pressure and flow values. For more information on alarms, see Alarms and Troubleshooting.

For use only while FDA’s Emergency Use Authorization is in effect.
Compatible Manual Ventilator

<table>
<thead>
<tr>
<th>Part</th>
<th>Supplier</th>
<th>Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambu SPUR II Adult Resuscitator</td>
<td>Ambu</td>
<td>Ambu Spur II</td>
</tr>
</tbody>
</table>

Tubing, Sensors, and Valves (outside enclosure)

<table>
<thead>
<tr>
<th>Part</th>
<th>Supplier</th>
<th>Part</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Moisture Exchange (HME) plus virus filter, 22 mm connector</td>
<td>Hsiner</td>
<td>70531</td>
<td>1</td>
</tr>
<tr>
<td>Virus filter, 22OD/22ID connector</td>
<td>Hsiner</td>
<td>70530</td>
<td>2</td>
</tr>
<tr>
<td>PEEP Valve, 30 mm ID, manual adjustable 5-20cm H2O</td>
<td>Hsiner</td>
<td>60019</td>
<td>1</td>
</tr>
<tr>
<td>Non Rebreathing Valve (NRV or patient valve) with 60cm H2O pop off</td>
<td>Hsiner</td>
<td>60031</td>
<td>1+2 extra</td>
</tr>
<tr>
<td>Tubing Adapter 22 mm ID x 30 mm OD</td>
<td>Hsiner</td>
<td>70080</td>
<td>1</td>
</tr>
<tr>
<td>Adapter 30mm ID x 22 mm OD</td>
<td>Hsiner</td>
<td>70065</td>
<td>1+2 extra</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 60 inch segment</td>
<td>Hsiner</td>
<td>70204</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 30 inch segment</td>
<td>Hsiner</td>
<td>70202</td>
<td>2</td>
</tr>
<tr>
<td>Pressure line adapter, 22mm OD x 22mm ID, for 4-6 mm ID pressure tubing</td>
<td>Hsiner</td>
<td>70084</td>
<td>1</td>
</tr>
<tr>
<td>Flexible tubing for air, fits pressure sensor adapter, 3/16" ID, 60</td>
<td>Saint Gobain</td>
<td>ADF00012</td>
<td>1</td>
</tr>
<tr>
<td>Water Trap, 22M, Adult, disposable</td>
<td>Hsiner</td>
<td>70520</td>
<td>1</td>
</tr>
<tr>
<td>Catheter mount adapter, 22Fx22M15F, disposable</td>
<td>Hsiner</td>
<td>70130</td>
<td>1</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Tubing, Sensors, and Valves (inside enclosure)

<table>
<thead>
<tr>
<th>Part</th>
<th>Supplier</th>
<th>Part</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Flow sensor</td>
<td>Sensirion</td>
<td>SFM3019</td>
<td>2</td>
</tr>
<tr>
<td>Digital flow sensor cable (to MB)</td>
<td>Sensirion IAC</td>
<td>6017A0254301</td>
<td>2</td>
</tr>
<tr>
<td>Pressure line adapter, 22mm OD x 22mm ID, for 5-7 mm ID pressure tubing</td>
<td>Teleflex</td>
<td>1642</td>
<td>2</td>
</tr>
<tr>
<td>Tubing Adapter 22 mm OD x 22 mm OD</td>
<td>Hsiner</td>
<td>70019</td>
<td>3</td>
</tr>
<tr>
<td>Elbow adapter 22mm ID - 22mm OD</td>
<td>Teleflex</td>
<td>1641</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 18 inch segment</td>
<td>Hsiner</td>
<td>70226</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 6 inch segment</td>
<td>Hsiner</td>
<td>70201</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 12 inch segment</td>
<td>Hsiner</td>
<td>70231</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated Tubing 22 mm ID - cut to 6 inch segment</td>
<td>Hsiner</td>
<td>70201</td>
<td>1</td>
</tr>
<tr>
<td>Flexible tubing for air, fits pressure sensor adapter, 3/16"ID, 30 inch long</td>
<td>Saint Gobain</td>
<td>ADF00012</td>
<td>3</td>
</tr>
<tr>
<td>Flexible tubing for air, fits pressure sensor port (1.9 mm OD), 1/16" ID, 12 inch long</td>
<td>Saint Gobain</td>
<td>ADF00002</td>
<td>3</td>
</tr>
<tr>
<td>Eldon James 1/4-18 NPSM to 3/16" x 3/16" Barbed Bulkhead Adapter</td>
<td>Eldon James</td>
<td>BH4S-3-3-200NK</td>
<td>1</td>
</tr>
<tr>
<td>Tight-Seal Moisture-Resistant Barbed Tube Fitting</td>
<td>Eldon James</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic, for Air and Water, Reducer, 3/16" x 1/16" Tube ID</td>
<td>Eldon James</td>
<td>C3-1-200NK-Q</td>
<td>3</td>
</tr>
</tbody>
</table>

Risks and Benefits

The benefits for the use of the Fitbit Flow have been reviewed against the risks of use and have found to outweigh the risks of use during the COVID-19 health emergency.

For use only while FDA’s Emergency Use Authorization is in effect.
Device Description

User Interface

The user interface consists of an LCD panel and control buttons and knobs on the front of the box. The LCD screen displays values from the system sensors, as well as mode and alarm settings. Settings may be selected and adjusted with the buttons and knobs as described below (Figure 4).

Controls, Indicators, and Displays

Figure 4: User Interface

For use only while FDA’s Emergency Use Authorization is in effect.
<table>
<thead>
<tr>
<th>Reference and Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LCD Screen</td>
<td>Displays ventilator parameters, sensor values, and alarm information</td>
</tr>
<tr>
<td>2 Respiratory Rate</td>
<td>Change the respiration rate (RR). Turn the knob clockwise to increase the value; counter-clockwise to decrease the value. The value is displayed on the LCD screen.</td>
</tr>
<tr>
<td>3 Inspiration:Expiration Ratio</td>
<td>Change the inspiration to expiration time ratio (I:E). Turn the knob clockwise to increase the value; counter-clockwise to decrease the value. The value is displayed on the LCD screen.</td>
</tr>
<tr>
<td>4 Tidal Volume / Inspiratory Pressure</td>
<td>Change the tidal volume (Vt) in volume control mode or inspiratory pressure (P) in pressure control mode. Turn the knob clockwise to increase the value; counter-clockwise to decrease the value. The value is displayed on the LCD screen.</td>
</tr>
<tr>
<td>5 Up</td>
<td>Scroll up through menu items or increase a parameter value</td>
</tr>
<tr>
<td>6 Back</td>
<td>Return to the previous menu</td>
</tr>
<tr>
<td>7 Start/Stop</td>
<td>Start or stop the Fitbit Flow</td>
</tr>
<tr>
<td>8 Confirm</td>
<td>Accept the new setting</td>
</tr>
<tr>
<td>9 Alarm</td>
<td>Press to see information on an active alarm. Press and hold to silence an active alarm.</td>
</tr>
<tr>
<td>10 Down</td>
<td>Scroll down through menu items or decrease a parameter value</td>
</tr>
</tbody>
</table>
Front Panel

![Figure 5: Front Panel](image-url)

<table>
<thead>
<tr>
<th>Reference and Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LCD Screen</td>
<td>Displays ventilator parameters, sensor values, and alarm information</td>
</tr>
<tr>
<td>2 Knob Controls</td>
<td>Used to adjust respiration rate, inspiration time, tidal volume, and inspiratory pressure</td>
</tr>
<tr>
<td>3 Button Controls</td>
<td>Used to navigate the UI, see alarm details, and start/stop ventilation</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Back Panel

Figure 6: Back Panel

<table>
<thead>
<tr>
<th>Reference and Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Display attachment</td>
<td>Holes to attach an optional external display</td>
</tr>
<tr>
<td>2 Display connector</td>
<td>HDMI and USB connections for an optional external display</td>
</tr>
<tr>
<td>3 Service connector</td>
<td>USB connection for when the Fitbit Flow needs to be serviced</td>
</tr>
<tr>
<td>4 On</td>
<td>Off Switch</td>
</tr>
<tr>
<td>5 AC Power Cable Connector</td>
<td>AC power cable connector</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Figure 7: Side Panel (Left)

<table>
<thead>
<tr>
<th>Reference and Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Medical gas inlet</td>
<td>Connects the Fitbit Flow to a medical gas source</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Right Panel

![Right Panel Diagram](image)

Figure 8: Side Panel (Right)

<table>
<thead>
<tr>
<th>Reference and Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PEEP Valve</td>
<td>Connector for PEEP valve to maintain positive end-expiratory pressure.</td>
</tr>
<tr>
<td>2 Expiration</td>
<td>Inlet for expiratory air coming from the patient via the patient circuit.</td>
</tr>
<tr>
<td>3 Inspiration</td>
<td>Outlet for inspiratory air to be delivered to the patient via the patient circuit.</td>
</tr>
<tr>
<td>4 Airway Pressure</td>
<td>Connects to the pressure line to monitor the patient airway pressure.</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Size and Weight

<table>
<thead>
<tr>
<th>Item</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitbit</td>
<td>25.2 inches</td>
<td>13.7 inches</td>
<td>15.2 inches</td>
<td>40.3 lb</td>
</tr>
<tr>
<td>Flow</td>
<td>641.0 centimeters</td>
<td>348.3 centimeters</td>
<td>386.9 centimeters</td>
<td>18.2 kg</td>
</tr>
<tr>
<td>Stand</td>
<td>37.5 inches</td>
<td>28.4 inches</td>
<td>22.2 inches</td>
<td>28.0 lb</td>
</tr>
<tr>
<td></td>
<td>95.2 centimeters</td>
<td>72.2 centimeters</td>
<td>56.4 centimeters</td>
<td>12.7 kg</td>
</tr>
</tbody>
</table>

Environmental Conditions

<table>
<thead>
<tr>
<th>Operating Temperature</th>
<th>0°C to 50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Humidity</td>
<td>Up to 95% RH</td>
</tr>
<tr>
<td>Storage and Transportation</td>
<td>-20°C to 70°C
Recommended <30°C and up to 85% RH</td>
</tr>
<tr>
<td>Environmental Pressure Range</td>
<td>70kPa to 130kPa</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Alarms and Troubleshooting

WARNING

Do not cover or obstruct the alarm button. The operator must be able to see the alarm button when the device is connected to the patient, particularly in noisy environments where the operator may not hear the alarm.

Frequent alarms are possible. When an alarm is triggered, always check the cause and respond accordingly. Failure to respond to alarms can result in serious harm or death.

Alarm Level of Priority

To identify the level of alarm criticality, use the information below:

<table>
<thead>
<tr>
<th>Alarm Priority</th>
<th>Alarm Indicators</th>
</tr>
</thead>
</table>
| **Very High Priority**—Immediate critical situation; ventilation is impossible | ● Audible: Continuous sound
● Visual: Solid red illumination
● Identified by the letter V in the Alarm details on the LCD screen |
| **High Priority**—Critical situation in the short term; ventilation is potentially compromised | ● Audible: High-speed intermittent sound
● Visual: Rapidly blinking red illumination
● Identified by the letter H in the Alarm details on the LCD screen |
| **Medium Priority**—Critical situation in the long term; ventilation is not affected in the short term | ● Audible: Medium-speed intermittent sound
● Visual: Intermittently blinking red illumination
● Identified by the letter M in the Alarm details on the LCD screen |

For use only while FDA’s Emergency Use Authorization is in effect.
Alarm Display

<table>
<thead>
<tr>
<th>Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 H Fan fault</td>
</tr>
<tr>
<td>2 H Temp motor</td>
</tr>
<tr>
<td>3 H Vti low</td>
</tr>
</tbody>
</table>

When an alarm is triggered:

- The alarm button illuminates:
- An audible alarm sounds

Press the alarm button to show the alarm details on the LCD screen.

Figure 9: Example of Alarms Screen

If there are multiple alarms, use the up and down buttons to scroll through them. Each alarm is numbered. The letter (V/H/M) indicates the priority level:

- **V**: Very high priority
- **H**: High priority
- **M**: Medium priority

A brief description of the alarm is shown to the right. For more details, including the time the alarm was triggered and any applicable measurement values, use the up and down buttons to select an alarm, and then press the confirm button. For more information on each type of alarm, see Alarm List.

Silence Alarms

Press and hold the alarm button for 3 seconds to silence the audible alarm for 60 seconds.

Press and hold the alarm button for 6 seconds to silence the audible alarm and the visual indicator for 60 seconds.

For use only while FDA’s Emergency Use Authorization is in effect.
Alarm List

To identify why an alarm activated, press the alarm button to show the alarm details on the LCD screen. The table below lists the different possible alarms, as well as what corrective action to take.

<table>
<thead>
<tr>
<th>Alarm name and Description</th>
<th>Possible cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTi hi</td>
<td>Inspiratory tidal volume is over programmed limit</td>
<td>In PCV mode, inspiratory pressure target is set too high</td>
</tr>
<tr>
<td>VTi low</td>
<td>Inspiratory tidal volume is below programmed limit</td>
<td>The Fitbit Flow cannot achieve set Vt due to physiology, high PEEP, or occlusion in inspiratory pathway</td>
</tr>
<tr>
<td>VTe low</td>
<td>Expiratory tidal volume does not match inspiratory volume within some tolerance.</td>
<td>Leak in patient valve or expiratory pathway. Occlusion or restriction in the expiratory pathway.</td>
</tr>
<tr>
<td>Pmax</td>
<td>Peak airway inspiratory pressure is above programmed limit</td>
<td>In VCV mode, set Vt causes limit to be reached due to lung physiology. Restriction or occlusion in the patient airway.</td>
</tr>
<tr>
<td>Pins hi</td>
<td>Inspiratory pressure above programmed limit set above target pressure.</td>
<td>In PCV mode, ventilation parameters set too high for lung physiology. Restriction or occlusion in the patient airway.</td>
</tr>
<tr>
<td>Pins low</td>
<td>Inspiratory pressure below the programmed limit set below target pressure.</td>
<td>Leak in patient valve or inspiratory pathway.</td>
</tr>
<tr>
<td>PEEP low</td>
<td>PEEP falls below</td>
<td>Manual valve set too low to achieve desired PEEP.</td>
</tr>
</tbody>
</table>
programmed limit. | Leak in breathing circuit (including patient valve) | Check the breathing circuit for leaks.
--- | --- | ---
Spontaneous Breath
Spontaneous breath detected (drop in inspiratory pressure 2 cmH2O below PEEP) when AC mode is not on. | (1) Patient sedation wearing off. (2) Patient increased work of breathing. | Assess patient and adjust care as necessary.

SYSTEM ALARMS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sys temp</td>
<td>Motor temperature out of tolerance range</td>
<td>Contact Technical Support. Place patient on another resuscitator/ventilator.</td>
</tr>
<tr>
<td>Motor fault</td>
<td>Motor not functioning as expected</td>
<td>Contact Technical Support. Place patient on another resuscitator/ventilator.</td>
</tr>
<tr>
<td>Fan fault</td>
<td>Fan not functioning as expected</td>
<td>Contact Technical Support. Place patient on another resuscitator/ventilator.</td>
</tr>
<tr>
<td>Sensor fault</td>
<td>Flow and pressure sensors not functioning as expected</td>
<td>Contact Technical Support. Place patient on another resuscitator/ventilator.</td>
</tr>
<tr>
<td>FW fault</td>
<td>Firmware watchdog triggered</td>
<td>Contact Technical Support. Place patient on another resuscitator/ventilator.</td>
</tr>
<tr>
<td>Lid open</td>
<td>The Fitbit Flow box lid is open while it is running</td>
<td>Close the lid of the Fitbit Flow. For user safety, the Fitbit Flow does not operate when the lid is open.</td>
</tr>
</tbody>
</table>

Additional Troubleshooting

See the table below for additional troubleshooting steps.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible cause</th>
<th>Corrective action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorized arms stop compressing the bag</td>
<td>Power loss</td>
<td>Manually operate by squeezing the resuscitator bag with two hands to</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
The Fitbit Flow screen doesn’t turn on, the alarm sounds, and both buttons illuminate.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>System failure</td>
<td>System failure</td>
<td>Contact Technical Support</td>
</tr>
<tr>
<td>Multiple unsustained alarms</td>
<td>Conditions that reach a high pressure, such as the patient coughing</td>
<td>No corrective action needed.</td>
</tr>
</tbody>
</table>

Installation and Setup

Set up the Fitbit Flow in an area where air can circulate freely. Avoid direct exposure to sunlight, and set the Fitbit Flow on a flat, stable surface where air inlets and outlets are not obstructed.

Assemble the Stand

WARNING

Lock the stand’s caster wheels whenever the Fitbit Flow is in use.

Do not attempt to move the Fitbit Flow when it is connected to a patient.

Components

- 1x Floor plate ([Part A](#))

- 1x Vertical support ([Part B](#))

For use only while FDA’s Emergency Use Authorization is in effect.
- 1x Device plate (Part C)

- 4x Casters (Part D)

- 16x Caster screws (M6x16, Hex Flathead) (Part E)
- 16x Caster nuts (M6) (Part F)
- 4x Floor plate: vertical support screws (M5x25, Hex, Button Head) (Part G)
- 4x Floor plate: vertical support washers (M5 Flat Washer) (Part H)
- 2x O2 retainer (Part J)

For use only while FDA’s Emergency Use Authorization is in effect.
Assembly Instructions

1. Attach casters (Part D) to floor plate (Part A) with 4 screws (Part E) and nuts (Part F). Repeat for each caster. Lock each caster with its foot pedal for the remainder of the assembly steps.

For use only while FDA’s Emergency Use Authorization is in effect.
2. Add 1 M5 washer (Part H) to each screw (Part G). Use the screws to attach the vertical support (Part B) to the floor plate (Part A). The M5 screws are secured using a 3mm hex wrench.

![Figure 11: Attaching Vertical Support to Floor Plate](image)

3. Slide the 2 O2 retainers (Part J) onto the vertical support. Insert 1 knob (Part K) through each retainer to lock it in place.

![Figure 12: Attaching O2 Retainers to Vertical Support](image)

4. Attach the device plate (Part C) to the vertical support with 4 screws (Part L).
5. Place the Fitbit Flow on the stand, inserting the Fitbit Flow's feet in the holes.

6. Add 1 washer (Part N) to each screw (Part M). Secure the Fitbit Flow with 2 screws from the underside of the device. The M4 screws are secured using a 2.5mm hex wrench.
Assemble the Fitbit Flow Air Pathway System

Components

- 1x Bag valve mask (BVM) with reservoir bag and oxygen input tubing, no safety valve, no PEEP valve, no mask (Part A)

- 1x Heat moisture exchange (HME) plus virus filter, 22 mm connector (Part B)

For use only while FDA’s Emergency Use Authorization is in effect.
- 2x virus filter, 22OD/22ID connector (**Part C**)

- 1x Patient Valve (or Non Rebreathing Valve (NRV))- with 60cm H2O pop off valve and expiratory diverter for PEEP connection, 30 mm OD (**Part D**)

- 1x Tubing adapter for PEEP valve, 22mm ID x 30 mm OD (**Part E**)

- 1x Tubing adapter for patient valve, 30mm ID x 22 mm OD (**Part F**)

For use only while FDA’s Emergency Use Authorization is in effect.
- 1x Corrugated tubing, 60 inches (Part G1)
- 2x Corrugated tubing, 30 inches (Part G2)

- 1x pressure line adapter, 22mm OD x 22mm ID, fits 3/16” ID pressure sensing tubing (Part H)

- Flexible tubing for air way inspiratory pressure sensing, 3/16-inch ID, 60 inch long (Part I)

For use only while FDA’s Emergency Use Authorization is in effect.
Assemble the Patient Circuit

1. Connect the virus filters (Part C) to both the inspiratory and expiratory ports on the right-hand side of the Fitbit Flow housing.
2. Connect the 60-inch long corrugated tubing (Part G1) to the end of the virus filter on the inspiratory limb to the inspiratory port of the NRV patient valve (Part D).
3. Connect the 30-inch long corrugated tubing (Part G2) to the viral filter on the expiratory limb.
4. Connect the expiratory limb to the water trap (Part J).

For use only while FDA’s Emergency Use Authorization is in effect.
5. Connect a second 30-inch piece of corrugated tubing (Part G2) to the other port of the water trap (Part J).
6. Use the tubing adapter (Part F) to connect the corrugated tubing G2 to the expiratory diverter port on the NRV patient valve (Part D).
7. Connect the patient port of the NRV patient valve (Part D) to the pressure line adapter (Part H).
8. Connect the ¼-inch tubing (Part I) to the pressure line adapter (Part H).
9. Connect the other end of the ¼-inch tubing (Part I) to the inspiratory pressure port on the Fitbit Flow.
10. Connect the pressure line adapter (Part H) to the HME (Part B).
11. Use a catheter mount adapter (Part K) to connect the HME to the patient intubation tube (not provided). This completes the patient airway circuit.
12. Use the tubing adapter (Part E) to connect the adjustable PEEP valve (Part L) to the PEEP valve port on the Fitbit Flow.

Figure 16: Patient Circuit Assembly
Assemble the BVM Inside the Fitbit Flow

1. Open the Fitbit Flow lid.
2. Place the BVM (Part A) onto the “wave” support so that the integrated handle faces up, the ends fit snugly in the holders, and the reservoir bag and oxygen tubing sit freely inside the box.
3. Secure the BVM with the attached stretch straps. Test the BVM to ensure it is immobilized against the support plates.
4. Connect the inspiratory port of the BVM to the corrugated tubing on the right-hand side of the Fitbit Flow.
5. Place the oxygen tubing on the BVM through the slot on the left-hand side of the Fitbit Flow.
7. The Fitbit Flow air pathway system should be checked routinely for leaks.

WARNING

The Fitbit Flow has not been characterized under leakage test conditions. If there is significant patient circuit leakage, the device may under-deliver tidal volume to the patient.
Power the Fitbit Flow

WARNING

The Fitbit Flow does not have an internal backup battery and does not have the capability to sound an alarm when power is interrupted. Connect the Fitbit Flow to a UPS to provide backup power.

The Fitbit Flow is powered with an AC connection.

1. Connect the female end of the Fitbit Flow’s AC power cable to the AC connector on the back of the Fitbit Flow.

![AC Power Cable Connector](image)

Figure 19: AC Power Cable Connector

2. Connect the male end of the AC power cable to the AC power outlet.

For use only while FDA’s Emergency Use Authorization is in effect.
Operating Procedures

WARNING
When moving the Fitbit Flow, disconnect it from the patient and turn off the device. Failure to do so could result in the Fitbit Flow unintentionally being turned off if it is unplugged during transport.

Turn On the Fitbit Flow

To turn on the Fitbit Flow, turn the ON | OFF switch to the **ON** position, as shown below.

![ON | OFF Switch ("ON" Position)](image)

The LCD screen will display a welcome message and the current firmware version for 5 seconds when the Fitbit Flow turns on. To skip the welcome message, press any button.

Start Ventilation

To start ventilation, press and release the start/stop button 🍿. The button illuminates green on each inspiration, indicating the breathing rate.

Ventilation Modes

Ventilation modes are:

- Volume control mode (PCV)
- Pressure control mode (VCV)

Both modes have an optional Assist Control setting which provides support for patient-triggered breaths when enabled.

For use only while FDA’s Emergency Use Authorization is in effect.
Volume Control Mode

From the main menu on the LCD screen:

1. Press the up button (if needed) to move the selector to VCV.
2. Press the confirm button to choose the ventilation mode.

If the VCV mode is already active, you’ll see the following critical settings and measurements:

- **VCV**: Indicates VCV mode is selected
- **AC**: Indicates that Assist Control is enabled. If it’s not enabled, you’ll only see the name of the mode in the top line
- **AC**: The asterisk indicates that Assist Control is enabled and was triggered on the previous breath
- **RR**: Displays the current respiratory rate
- **I:E**: Displays the current inspiratory:expiratory time ratio
- **VTi**: Displays the measured tidal volume of the previous breath
- **PIP**: Displays the measured peak inspiratory pressure of the previous breath
- **Pins**: Displays the measured mean airway pressure during the inspiratory cycle of the previous breath
- **PEEP**: Displays the measured end-expiratory pressure of the previous breath

```
+------------------------+
| VCV AC*               |
| RR       20   PIP 19   |
| I:E 1:2.5  Pins 14    |
| VTi 407    PEEP 9     |
+------------------------+
```

Figure 21: Example of VCV Active Screen

To change the parameters, press the confirm button .

If the mode is not yet active, or you pressed the confirm button from the active screen, you’ll see the following adjustable parameters:

- **VCV Set**: Indicates which mode you selected
- **RR**: Displays the respiratory rate parameter. Use the RR knob to adjust the RR from 8-30 in steps of 2.

For use only while FDA’s Emergency Use Authorization is in effect.
• **I:E**: Displays the inspiratory:expiratory ratio parameter. Use the I:E knob to adjust the I:E from 1:1 to 1:4 in steps of 0.5.

• **VT**: Displays the tidal volume parameter. Use the Vt/P knob to adjust the Vt target from 200mL to 700mL in steps of 50mL.

```
+-----------------------------------------------+
| VCV Set                                      |
| RR    20   AC ON                             |
| I:E  1:2.5       More                        |
| VT    400 >Accept                            |
+-----------------------------------------------+
```

Figure 22: Example of VCV Set Screen

To turn on Assist Control on or off:

1. Press the up button to move the selector to **AC ON** or **AC OFF**.

2. Press the confirm button to turn Assist Control on or off.

To accept and apply any new settings, use the up and down buttons (if needed) to navigate to **Accept** and press the confirm button. If ventilation is not in progress, the Fitbit Flow will use the selected parameters when ventilation is turned on. If ventilation is already in progress, the selected parameters are applied on the next breath.

To return to the previous screen without applying any changed settings, press the back button.

Pressure Control Mode

WARNING

When operating in PCV (Pressure Control Mode) the Fitbit Flow may not achieve a constant pressure throughout the entire inspiratory period, which may reduce the delivered tidal volume.

From the main menu on the LCD screen:

For use only while FDA’s Emergency Use Authorization is in effect.
3. Press the down button to move the selector next to **PCV**.

4. Press the Confirm button to choose the ventilation mode.

If the mode is already active, you’ll see the following critical settings and measurements:

- **PCV**: Indicates which mode you selected
- **AC**: Indicates that Assist Control is enabled. If it’s not enabled, you’ll only see the name of the mode in the top line
- **AC***: The asterisk indicates that Assist Control is enabled and was triggered on the previous breath
- **RR**: Displays the current respiratory rate
- **I:E**: Displays the current inspiratory:expiratory ratio
- **Vt**: Displays the measured tidal volume of the previous breath
- **PIP**: Displays the measured peak inspiratory pressure of the previous breath
- **Pplt**: Displays the measured plateau pressure of the previous breath
- **PEEP**: Displays the measured positive end-expiratory pressure of the previous breath

```
+-----------------------------+  
|    PCV  AC\*   |        |
|    RR      20  | PIP 19 |
|    I:E 1:2.5 | Pplt 14|
|    Vt      400| PEEP 9.2|
+-----------------------------+  
```

Figure 23: Example of PCV Mode Active Screen

To change the parameters, press the confirm button.

If PCV mode is not yet active, or you pressed the confirm button from the active screen, you’ll see the following adjustable parameters:

- **PCV Set**: Indicates you selected PCV mode

- **RR**: Displays the respiratory rate parameter. Use the RR knob to adjust the RR from 8-30 in steps of 2.

- **I:E**: Displays the inspiratory:expiratory ratio parameter. Use the I:E knob to adjust the I:E from 1:1 to 1:4 in steps of 0.5.

- **PIP**: Displays the peak airway pressure during the inspiratory cycle of the previous breath. Use the Vt/P knob to adjust the PIP target from 4 to 40 in steps of 2.

For use only while FDA’s Emergency Use Authorization is in effect.
You should always monitor the delivered tidal volume when operating in PCV mode.

<table>
<thead>
<tr>
<th>PCV Set</th>
</tr>
</thead>
</table>
| RR 20 | AC ON
| I:E 1:2.5 | More
| Pins 25 | > Accept

Figure 24: Example of PCV Mode Set Screen

To turn on Assist Control on or off:

3. Press the up button to move the selector to **AC ON** or **AC OFF**.

4. Press the confirm button to turn Assist Control on or off.

To accept and apply any new settings, use the up and down buttons (if needed) to navigate to **Accept** and press the confirm button . If ventilation is not in progress, the Fitbit Flow will use the selected parameters when ventilation is turned on. If ventilation is already in progress, the selected parameters are applied on the next breath.

To return to the previous screen without applying any changed settings, press the back button .

Assist Control

WARNING

When Assist Control is enabled, it is important to monitor for breath stacking (also called breath dyssynchrony stacking), which can result in unintended high tidal volumes as a consequence of incomplete exhalation between consecutive cycles. Continuous CO\textsubscript{2} monitoring (also called capnography) and arterial blood gas sampling should be conducted to detect high CO\textsubscript{2} levels which may be a consequence of hypoventilation.

The Assist Control feature may be enabled in either Volume Control or Pressure Control mode. When Assist Control is enabled, a patient’s spontaneous breath can trigger the delivery of a

For use only while FDA’s Emergency Use Authorization is in effect.
mechanical ventilator breath, outside of the cycle time determined by the respiratory rate. A spontaneous breath is detected when the airway pressure drops 2 cmH₂O below PEEP.

When Assist Control is enabled, the software performs additional safety checks to avoid the unintended delivery of high tidal volumes. These include:

1. Up to two consecutive assist breaths will be delivered. The third consecutive spontaneous breath will not result in an assist breath. After a normal, unassisted ventilator breath, assist breaths will resume.
2. Upper limits are set on volume and pressure, based on the set targets and alarm limits. If during an assist breath these limits are reached, the assist breath will be stopped, and the system will switch to expiration phase.

When Assist Control is enabled, if an assist breath is not delivered because of the above conditions, then an alarm will be activated.

When Assist Control is disabled, an alarm will trigger if spontaneous breaths are detected.

Inspiratory Hold

The inspiratory hold function pauses the Fitbit Flow at end-inspiration for one second. This maneuver can be used to measure the patient’s plateau pressure (also called alveolar pressure). To perform an inspiratory hold:

1. Press and release the start/stop button. **HOLDING THE START/STOP BUTTON DOWN FOR 5 SECONDS WILL TURN OFF THE FITBIT FLOW.**
2. IH will appear at the top of the LCD screen, indicating an inspiratory hold is pending.
3. The inspiratory hold will occur on the subsequent breath cycle.
4. On the LCD screen, the Pins label will temporarily change to Pplt to indicate the inspiratory hold completed.

IMPORTANT: The inspiratory hold will be postponed if a spontaneous breath is detected or the volume or pressure limit alarms are triggered. The inspiratory hold will be attempted during the next mechanical breath.

WARNING

In some patients, especially those with abnormal lung compliance, an inspiratory hold of one second may not be long enough for the pressure to equilibrate in the lungs. In such cases, the reported plateau pressure will not be accurate.

For use only while FDA’s Emergency Use Authorization is in effect.
Stop Ventilation

To stop ventilation, press and hold the start/stop button for 5 seconds.

Turn off the Fitbit Flow

To turn off the Fitbit Flow, turn the ON | OFF switch to the OFF position, as shown below.

![ON | OFF Switch (“OFF” Position)](image)

The LCD screen turns off.

Adjust Settings and Alarm Parameters

To adjust the ventilator parameters, including PEEP and alarm limits:

1. Choose a ventilation mode (PCV or VCV).

2. If the ventilation mode is already active, press the confirm button to show the Set screen.

3. Press the up button to move the selector to More.

4. Press the confirm button. You’ll see the PCV/VCV Set 2 screen.

5. Use the up button and down button to move the selector to the parameter you want to change.

6. Press the confirm button. You can now use the up button and down button to adjust the parameter.

For use only while FDA’s Emergency Use Authorization is in effect.
7. When the parameter is set to the number you want, press the confirm button.

8. Press the back button to return to the previous screen.

Adjustable parameters include:

- **Pmax**: This parameter sets the maximum allowed airway pressure. If it’s exceeded, the Pmax alarm is triggered and the inspiration cycle in progress is immediately terminated.
- **Pins**: This parameter sets the thresholds for the allowed inspiratory pressure (below Pmax). If it’s exceeded in either direction, the Pins hi or Pins low alarm is triggered.
- **VTi**: This parameter sets the thresholds for the allowed inspiratory tidal volume. If it’s exceeded in either direction, the VTi hi or VTi low alarm is triggered.
- **PEEP**: Set this parameter to match the setting of the unit’s physical PEEP valve. If the measured PEEP falls too far below this threshold, the PEEP low alarm is triggered.

For more information on the default settings and thresholds, see Alarm Conditions.
Cleaning and Maintenance

WARNING

Failure to follow the cleaning and maintenance instructions could result in equipment damage and potentially harm the patient.

Do not attempt to clean or re-use single use accessories.

The Fitbit Flow has been tested for 24 hours of continuous use. If using longer than 24 hours, check for signs of wear and tear, particularly on the manual resuscitator bag.

The Fitbit Flow has not been characterized under leakage test conditions. If there is significant patient circuit leakage, the device may under-deliver tidal volume to the patient.

Clinicians and care providers should inspect the manual resuscitator bag for signs of heavy wear every four hours, or approximately 2800 compressions. In the event of alarms, attending medical care providers should immediately inspect the integrity of the bag and breathing circuit to ensure no leaks or disconnections occurred. Please note that signs of wear on the resuscitator bag are expected due to the automatic compression. Signs of wear include markings or abrasions on the bag surface. Signs such as tearing of the bag or the bag not expanding to its full capacity indicate that the mechanical integrity of the bag may be degraded. If such wear is noticed on the bag it needs to be replaced immediately.

Cleaning the Fitbit Flow

Clean all external surfaces before and after each patient use, and as needed to keep the Fitbit Flow clean. To clean the surfaces:

1. Dampen a soft, clean cloth with a mild soap solution. Remove any excess liquid.
2. Wipe the external case of the Fitbit Flow with the damp cloth. Do not immerse the Fitbit Flow in liquid.
3. Dry the surface with a soft, clean cloth, removing all liquid.
4. Wipe the surface with a disinfectant solution per manufacturer instructions of disinfectant.

Cleaning the Manual Resuscitator Bag

Follow the accessory manufacturer’s instructions for cleaning the manual resuscitator bag. The bag should not be reused between patients.

For use only while FDA’s Emergency Use Authorization is in effect.
Replace Accessories

The resuscitator bag and breathing circuit is designed to be used for a single patient and should be discarded and replaced after each use. If the breathing circuit is damaged, replace it. If necessary, the exterior surface of the tubes can be cleaned with a damp cloth, then dried with a soft, clean cloth.

WARNING

Do not reuse single-use components. Doing so increases the risk of cross-contaminations between patients.

Specifications

The Fitbit Flow provides continuous mechanical ventilation by automatically compressing a resuscitator bag. The Fitbit Flow can operate in Volume Control mode, Pressure Control mode, with or without the Assist Control setting. The ventilatory parameters are listed below.

Physical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation modes</td>
<td>Volume Controlled, Pressure Controlled</td>
</tr>
<tr>
<td>Patient connection</td>
<td>Connects to standard ventilator tubing</td>
</tr>
<tr>
<td>Pins</td>
<td>15-40 cmH₂O</td>
</tr>
<tr>
<td>PEEP</td>
<td>5 - 20 cmH₂O, set by a manual valve</td>
</tr>
<tr>
<td>RR</td>
<td>8 - 30 breaths per minute</td>
</tr>
<tr>
<td>VT</td>
<td>200 - 700 mL</td>
</tr>
<tr>
<td>I:E</td>
<td>1:1 - 1:4</td>
</tr>
<tr>
<td>PIP</td>
<td>15 - 60 cmH₂O</td>
</tr>
<tr>
<td>Assist Control pressure trigger (below PEEP)</td>
<td>-2 cmH2O</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Accuracy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>V_{ti} Control</td>
<td>$\pm(-1.20 + (4.60% \text{ of set } V_{ti})) \text{ mL}$</td>
</tr>
<tr>
<td>P_{aw} Control</td>
<td>$\pm(0.66 + (1.58% \text{ of set pressure})) \text{ cmH}_2\text{O}$</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
</tr>
<tr>
<td>PEEP</td>
<td>$\pm(0.42 + (0.20% \text{ of meas. PEEP})) \text{ cmH}_2\text{O}$</td>
</tr>
<tr>
<td>PIP</td>
<td>$\pm(0.73 + (1.69% \text{ of meas. PIP})) \text{ cmH}_2\text{O}$</td>
</tr>
<tr>
<td>V_{ti}</td>
<td>$\pm(-2.98 + 4.82% \text{ of meas. } V_{ti}) \text{ mL}$</td>
</tr>
<tr>
<td>V_{te}</td>
<td>$\pm(3.74 + (1.51% \text{ of meas. } V_{te}) \text{ mL}$</td>
</tr>
</tbody>
</table>

Labeling Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ARDSnet Conformance</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/VC</td>
<td>PC / VC</td>
<td>PC / VC with Assist Control</td>
</tr>
<tr>
<td>4-6 cc/kg TV</td>
<td>Weight <115 kg</td>
<td>*Calculated for 6cc/kg limit</td>
</tr>
<tr>
<td>FiO$_2$ (.21-1.0)</td>
<td>No</td>
<td>*FiO$_2$ is not measured by system. A table (see Appendix Table A.1) is provided as guidance for matching the source gas flow to minute ventilation, to maintain desired FiO$_2$. SpO$_2$ monitoring is recommended.</td>
</tr>
<tr>
<td>I:E ratio (1:1-1:3)</td>
<td>Yes*</td>
<td>*Can do 1:4</td>
</tr>
<tr>
<td>RR (up to 35)</td>
<td>No*</td>
<td>RR max 30</td>
</tr>
<tr>
<td>PEEP (up to 24 cm H$_2$O)</td>
<td>No*</td>
<td>PEEP max 20 H$_2$O, set by manual PEEP valve</td>
</tr>
<tr>
<td>$P_{plateau}$</td>
<td>Yes</td>
<td>ARDSnet goal $P_{plateau}$ \leq 30 cmH$_2$O. An inspiratory hold of 1 seconds can be done to measure plateau pressure.</td>
</tr>
</tbody>
</table>

Validation and Performance Conformance

<table>
<thead>
<tr>
<th>Validated reservoir bags</th>
<th>AMBU Bag SPUR II Adult*</th>
<th>Met ISO 10651-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of Monitored parameters (as applicable)</td>
<td>Volumes ± 10%</td>
<td>$V_{ti}: \pm(-2.98 + 4.82% \text{ of meas. } V_{ti}) \text{ mL}$</td>
</tr>
<tr>
<td>Accuracy Delivered (as applicable)</td>
<td>Pressures (2 + 4 % of the actual reading) hPa (cmH$_2$O)</td>
<td>$\pm(0.73 + (1.69% \text{ of meas. PIP})) \text{ cmH}_2\text{O}$</td>
</tr>
<tr>
<td></td>
<td>Volumes ± 20%</td>
<td>$\pm(-1.20 + (4.60% \text{ of set } V_{ti}) \text{ mL}$</td>
</tr>
<tr>
<td></td>
<td>Pressures ± 10%</td>
<td>$\pm(0.66 + (1.58% \text{ of set pressure}) \text{ cmH}_2\text{O}$</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Spontaneous Breathing detection	Yes	Device can detect spontaneous breathing (Assist Control) and has mechanisms to prevent breath stacking
Internal power source ventilation duration capacity | 30 minutes | Back-up Battery checked at maximal device performance for 30 minutes. Battery is accessory with stand.
Contamination risk to environment | No* | *Need bacterial/viral filter (filtration efficiency 99.99%) at exhaust.
Durability | Yes | Tested for 24 hours with single AMBU bag, and performance was maintained throughout test, that the user-powered resuscitator was not damaged, that the breathing system remained connected and that the user-powered resuscitator remained in place.

Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-off Alarm</td>
<td>No</td>
</tr>
<tr>
<td>Disconnect Alarm (Low PIP alarm)</td>
<td>Yes (within two breaths)*</td>
</tr>
<tr>
<td>External power supply failure Alarm</td>
<td>Yes*</td>
</tr>
<tr>
<td>Back-up Battery</td>
<td>Yes*</td>
</tr>
<tr>
<td>Low FiO2 alarm</td>
<td>No</td>
</tr>
<tr>
<td>Maximum PIP alarm</td>
<td>Yes at 40cm H\textsubscript{2}O</td>
</tr>
<tr>
<td>Occlusion alarm/Continuing Pressure</td>
<td>Yes</td>
</tr>
<tr>
<td>TV not met/exceeded alarm</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Implications for additional clinical monitoring | Standard ARDS clinical monitoring + continuous SpO\textsubscript{2},* |

Training

| Training required | Read the instructions for use before operating the Fitbit Flow.

Acronyms: PC – Pressure Control, VC – Volume Control, FiO\textsubscript{2} – Fraction of Inspired Oxygen, I:E ratio – inspiration – expiration ratio, RR – respiratory rate, PEEP – positive end-expiratory pressure, P\textsubscript{plateau} – Plateau Pressure, PIP – peak inspiratory pressure, T\textsubscript{v} -tidal volume

Electrical

The Fitbit Flow uses a 138W medical-grade Class II power supply, which supports 100-240 VAC, 47-63 Hz. The power supply accepts a 2 prong, detachable power cord and is compliant.

For use only while FDA’s Emergency Use Authorization is in effect.
with IEC 60601-1 with support for U.S. and international voltages. There is no internal battery. The Fitbit Flow must be used in conjunction with an external UPS to provide backup power.

In case of an emergency or power failure, the resuscitator bag may be manually operated by squeezing with two hands to provide ventilation, as per the intended use of the manual resuscitator.

Alarm Conditions

The Fitbit Flow has a set of visual and audible alarms to alert the operator when ventilator conditions exceed set limits. Default values are listed, but values should be changed based on recommendations from professionals caring for COVID-19 patients.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Default Settings</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High VTi</td>
<td>700mL</td>
<td>700mL</td>
</tr>
<tr>
<td>Low VTi</td>
<td>200mL</td>
<td>200mL</td>
</tr>
<tr>
<td>VTi, VTe difference</td>
<td>±20% of VTi</td>
<td>Fixed</td>
</tr>
<tr>
<td>High Pins</td>
<td>40 cmH₂O</td>
<td>60 cmH₂O</td>
</tr>
<tr>
<td>Low Pins</td>
<td>5 cmH₂O</td>
<td>0 cmH₂O</td>
</tr>
<tr>
<td>High PEEP</td>
<td>20 cmH₂O</td>
<td>30 cmH₂O</td>
</tr>
<tr>
<td>Low PEEP</td>
<td>5 cmH₂O</td>
<td>0 cmH₂O</td>
</tr>
<tr>
<td>Spontaneous breath when AC is disabled</td>
<td>Detection of spontaneous breath when AC is disabled, as detected in drop of airway pressure 2 cmH₂O below PEEP.</td>
<td>N/A</td>
</tr>
<tr>
<td>Assist breath alarm when AC is enabled</td>
<td>In AC mode, an Assist Breath alarm will be triggered if: 1. The two previous breaths were assist breaths. 2. The pressure has reached an alarm limit.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
3. The volume has reached an alarm limit.
A.1 FiO₂ Flow and Minute Ventilation

The percentage of oxygen in the air delivered to the patient (FiO₂) is determined by the source oxygen content and flow rate, and the patient minute ventilation. The minute ventilation is the product of the respiratory rate (RR) in breaths per minute (bpm) and tidal volume (Vₜ) in milliliters (mL). In order to deliver a %FiO₂ which matches the source %O₂, the source gas flow rate should be greater than the patient’s minute ventilation. Otherwise, room air will be pulled into the system and reduce FiO₂. Table A.1 shows the minute ventilation for different combinations of RR and Vₜ as guidance. For example,

1) If the source gas is 100% O₂, and the desired FiO₂ is also 100%, then for an RR of 12 bpm and a Vₜ of 500 mL, the flow rate should be greater than 6.0 liters per minute (lpm).
2) If the source gas is 60% O₂, and the desired FiO₂ is also 60%, then for an RR of 16 bpm and a Vₜ of 600 mL, the flow rate should be greater than 9.6 liters per minute (lpm).

WARNING

Clinical monitoring (e.g. SpO₂ with finger pulse oximetry and arterial blood gases) should be conducted to make sure the patient is achieving adequate oxygenation. The Fitbit Flow does not directly measure the %FiO₂ delivered to the patient, and one should not assume that the delivered %FiO₂ is equal to the %O₂ of the source.

Table A.1: Minute ventilation in liters per minute (lpm) based on respiration rate (RR) and tidal volume (Vₜ).

<table>
<thead>
<tr>
<th>RR (bpm)</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.6</td>
<td>2.4</td>
<td>3.2</td>
<td>4.0</td>
<td>4.8</td>
<td>5.6</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>12</td>
<td>2.4</td>
<td>3.6</td>
<td>4.8</td>
<td>6.0</td>
<td>7.2</td>
<td>8.4</td>
</tr>
<tr>
<td>14</td>
<td>2.8</td>
<td>4.2</td>
<td>5.6</td>
<td>7.0</td>
<td>8.4</td>
<td>9.8</td>
</tr>
<tr>
<td>16</td>
<td>3.2</td>
<td>4.8</td>
<td>6.4</td>
<td>8.0</td>
<td>9.6</td>
<td>11.2</td>
</tr>
<tr>
<td>18</td>
<td>3.6</td>
<td>5.4</td>
<td>7.2</td>
<td>9.0</td>
<td>10.8</td>
<td>12.6</td>
</tr>
<tr>
<td>20</td>
<td>4.0</td>
<td>6.0</td>
<td>8.0</td>
<td>10.0</td>
<td>12.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>

For use only while FDA’s Emergency Use Authorization is in effect.
Standards Compliance

The Fitbit Flow was designed and constructed to be in compliance of the following standards. However, external review of compliance with these standards has not been performed.

General Standard

- IEC 60601-1: 2012: Medical Electrical Equipment – Part 1: General Requirements for Basic Safety and Essential Performance
- IEC 60601-1-8:2006: Medical electrical equipment — Part 1-8: General requirements for basic safety and essential performance — Collateral standard: General requirements, tests and guidance for alarm systems in medical electrical equipment and medical electrical systems

Particular Standards

The manual resuscitator bag that has been tested with the Fitbit Flow is the Ambu Spur II. This is an FDA cleared device. The Ambu Spur II claims conformance to the following standards:

- ISO 10651-4: Lung ventilators – Part 4: Particular requirements for operator powered resuscitators
- ISO 5356-1: Anaesthetic and respiratory equipment – Conical connectors – Part 1: Cones and sockets

For use only while FDA’s Emergency Use Authorization is in effect.
User Assistance Information

This manual is for SKU: FB605WTWT.

Technical Support

For assistance or support, email support_flow@fitbit.com or call 1-800-676-1401 (Mon-Fri: 5am-5pm PT, Sat-Sun: 8am-5pm PT).

Manufactured by:
Fitbit, Inc.
199 Fremont St. 14th Floor
San Francisco, CA 94105

www.fitbit.com

Trademark Information

©2020 Fitbit, Inc. All rights reserved. Fitbit and the Fitbit logo are trademarks or registered trademarks of Fitbit in the US and other countries. A more complete list of Fitbit trademarks can be found at http://www.fitbit.com/legal/trademark-list. Third-party trademarks mentioned are the property of their respective owners.

For use only while FDA’s Emergency Use Authorization is in effect.